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ON THE GAUSS MAP OF MINIMAL
SURFACES IMMERSED IN R”

MIN RU

Abstract

In this paper, we prove that the Gauss map of a nonflat complete minimal
surface immersed in a Euclidean n-space R" can omitat most a(n+1)/2

hyperplanes in a complex projective (n — 1)-space cP"! located in
general position.

1. Intreduction

Let M be a smooth oriented two-manifold without boundary. Take
an immersion f : M — R". The metric on M induced from the stan-
dard metric a’s;‘; on R” by f is denoted by ds’®. Let A denote the
Laplace-Beltrami operator of (M, a’sz). The local coordinates (x, ) on
(M, ds*) are called isothermal if ds® = h(dx* + dy*) for some local
function # > 0. Make M into a Riemann surface by decreeing that the
1-form dx +idy is of type (1, 0), where (x, y) are any isothermal co-
ordinates. In terms of the holomorphic coordinate z = x + iy, we can
write

-4 9?

A= 5763"

We say that f is minimal if Af = 0, ie., an immersion into R" is
minimal if and only if it is harmonic relative to the induced metric.
The Gauss map of f is defined to be

G:M—-CP"™', G(z)=[8f/02)],

where [(-)] denotes the complex line in C” through the origin and ().
By the assumption of minimality of M, G is a holomorphic map of M
into CP"'.

In 1981, F. Xavier showed that the Gauss map of a nonflat complete
minimal surface in R® cannot omit seven points of the sphere {15]. In
1988, Fujimoto reduced seven to five, which is sharp [6]. For the n > 3
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case, Fujimoto [7] proved that the Gauss map G of a complete minimal
surface M in R" can omit at most n(n + 1)/2 hyperplanes in general
position, provided G is nondegenerate, i.e., G(M) is not contained in
any hyperplane in CP"™!

In this paper, we will remove Fujimoto’s “nondegenerate” condition.
The map G is called k-nondegenerate if G(M) is contained in a k-dimen-
sional linear subspace of CP"~!, but none of lower dimension. We shall
give the following theorem.

Theorem 1. Let M be a nonflat complete minimal surface immersed
in R" and assume that the Gauss map G of M is k-nondegenerate (0 <
k<n- 1) Then G can omit at most (k+1)(n—k/2—1)+n hyperplanes
in CP"™! located in general position.

In particular, we have

Corollary. Let M be a nonflat complete minimal surface immersed in
R". Then the Gauss map G can omit at most n(n + 1)/2 hyperplanes in
CP"™! located in general position.

Proof. We canassume G is k-nondegenerate (0 < k < n—1), because
for 0 <k <n-1, we have:

nn+1)/2>k+1)(n—k/2—1)+n.
Thus the theorem implies the corollary.

2. Basic concepts of holomorphic curves into projective spaces

In this section, we shall recall some known results in the theory of holo-
morphic curves in CP” .

(A) Associated curve. Let f be a k-nondegenerate holomorphic map
of Ag :=={z;]z| < R} (c C) into CP", where 0 < R < +oo. Since
Sf(AR) is contained in a k-dimensional subspace of CP", we may as-
sume that f(Ap) is contained in CcP* , so that f:Ap — CP* is non-
degenerate. Take a reduced representation f = [Z,:---: Z,], where
Z=(Zy,  ,2Z): Mg — Cck+1 ~ {0} is a holomorphic map. Denote z
the jth derivative of Z and define

~ 7O, 0, k+1
A=Z ANZ /\c
for 0<j<k. Evidently A, , =0.

Denote
j+1 j+1 kel N
P:/\Ck+1—{0}—+P(/\C+)=CP s,
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where N, = (’J‘jl‘ )—1,and P is the natural projection. A, projects down
to a curve

f;=PA):Ag—»CPY,  0<j<k,
called the jth associated curve of f. Let wj be the Fubini-Study form
on CPY , and

be the pullback via the jth associated curve. It is well known [4] (see also
[12]) that, in terms of the homogeneous coordinates,

2 2
. i 1A A ]
(2.2) Q= fw,=dd’log|A,]* = ZI._J_;XlTJﬂ_ dzndz
J

for 0 < j <k, and by convention A_, =1. Note that Q, = 0. It follows
that
R1cQj = Qj—l + Qj+1 - 2Qj.
(B) Projective distance. For integers 1 < g < p < n + 1, the intertor
product of vectors & € AP C**! and o € AT CFY s defined by

Cla,B)=@E,anpB)=(aAB)E)
forany g e A’9C*'" . For x € P(N"*' C**Y and a € P(A\T C**17)
the projective distance ||x, a|| is defined by
€L «f
Elle

where & € AP C**1 — {0} and a € AT CH — [0}; P(&) = x and
Pla)=a.
For a hyperplane a of CcP* , denote

Ix, a“ =

: J
fiLa=PA;La):Ay—~P (/\c"“) ,

(2.4)

PA)=f;, Pla)=a,
and
(2.5) p,@ =, al’.

Note that 0< ¢;(a) < ¢;,,(a) <1 for 0<j < k,and ¢, (a)=1.
We need the following well-known lemma (see [4], [12], or [14]).
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Lemma 2.1. Let a be a hyperplane in CP*. Then Jfor any constant
N>1land 0<p<k-1,

1
(2.6) dd‘log > { - =
N—logd,(a;) = | ¢,(a)(N —logg,(a))> NJ *
on AR—{qu:O}.
(C) Nochka weight and product to sum estimate. Let H,,--- , H, be
the hyperplanes in CP" in general position. Then H,; can be considered

as a point in CP" , where CP" is the dual space of CP". Let I: CP* -
CP" be the inclusion map. Then the dual map [*: CP* — CP* is
surjective. Let a, =/ *(HI.) . According to Chen {2], we define the concept
of n-subgeneral position here.

Definition 2.1. The hyperplanes 4, -, a, in CP* are called in n-
subgeneral positt_‘on iff for every injective map A: Z[0, n] — Z[1, q], there
are o, € ckt —{0} such that Q) = P(a'{(i)) for i=0,1,--- ,n and
k+1*

such that the vectors Qs s Qg generate C
It is easy to check thatif H,,--- , H , are in general position in CP",

then a,,--- , a, are in n-subgeneral position in CP*.

We have the following lemma.

Lemma 2.2 (See Chen [2, Theorem 6.16], also Nochka [8]). Let a,,

, a, be hyperplanes in CP* in n-subgeneral position. Then there exist

a function @ : Q — R(0, 1] and a number 6 > 0 with the following
Droperties:

1)0<w()8<1 forall je@.

2g-2n+k-1 =t9(z;’.=l w(j)—k-1).

B1<(n+)/k+1)<O0<2n—-k+1)/(k+1).

We will call w the Nochka weight for hyperplanes {a;}.

We also have the product-to-sum estimate as follows:

Lemma 2.3 (See Chen [2, Theorem 7.3]). Suppose the above assump-
tions are true, and take p € Z[0, k — 1]1. Then for any constant N > 1,
1/qg < Ap < 1/(k — p), there exists a positive constant ¢,>0 which only
depends on p and the given hyperplanes such that

& (9p1(a)) o) 1 ¥
H $,(a;) (N - log,(a,))?

g p+l(a )
Z‘: —log$,(a))”

(2.7)

Ag—{$, =0}.
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3. The main lemma
In this section, we retain the notation of §2. For hyperplanes a,, -+ , a
in CPk let @ be their Nochka weight (see Lemma 2.2).

Let Q = 2’nhp( z)dz Adz and

(@)\“” 1 v
3.1 =C ptl h,
) H[( (¢ )‘) (N —log¢,,(aj>)2} ?

where C, is the constant in the product-to-sum estimate (cf. Lemma 2.3),

= 1/lk —p+2q(k —p)’/N],and N> 1.
We take the geometric mean of the o, and define

. k-1
(3.2) r= ﬁc [[of*dznaz,
p=0

where B, = I/E’;;é Ap~! and ¢ = 2(]'[::& lp“’_l)ﬂ" . Let

r= E%h(z) dzAdz,  RicT=dd’Inh(z).

Then

q B ¢
(3.3) h(z)=cH (¢( )wo)) H

j=1

— hﬂk/'lp
H (N ~log4, (g, >)24

p=0

Lemma 3.1. For g >2n—-k+2, and

2 T4 () (k+1)

N < %k +2) ’

we have RicI’ >T.
Progf. From (3.3) it follows that

q
RicI'= — Bk z:a)(J)ddC IOgd’o(aj)

j=1

q k-1 2 k—1 ,
+ Bk Zdeclog (7\7——10%;5;(—5]_)) + Bk Z(l/lp) RiCQp .

_j=l p=1 p=0

q .
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By Lemma 2.1, (2.3), and that dd“log¢y(a;) = —Q,, we have

q k—1 (a) 2q
34 ) p+1 o
> i ;Imo ¢,(a,)(N —logé,(a; )) N ;: p

+Z[k p)+ (k- p)22q]{ » 2Qp+9p_l}).

p=0
Using Lemma 2.3 we obtain

p+1(aj) Q
; ,(a)(N ~logg,(a))® *

g (a w(j) 1 *p
p+1
[I ( (a;) ) (N—logqs,,(a,.))z} “

=Eapdz/\d2.

We also notice that Q, =0, so that

|V

Yk -p)Q,,, —2Q,+Q, ) =—(k+ 1)Q,
and therefore

q . k—1
RicT > B, (Z w(j)Q, + 2% Y o,dzAdz—(k+1)Q,
p=0 .

j=1
e 2k)%qgo

k-2

+ Ik -p+1)°
p=1

2k -p)+(k—-p-1) —1]2qQ +2qQk 1).

We use the following elementary inequality:

For all the positive numbers x,,:-- ,x, and a,,--- , a

n n?

(3.5)

a,\1/(a,++a,)
") -

a
ax +--+a,x, 2@+ +a,)(x'x
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~!in (3.5), we have

k-1 ¢ k-1 8./i

i/ AD
20,2 28, IIs,
p=0 p=0

Letting a, = AD

and therefore
RicT

>,Bk[zw(1)—(k+l)—(k +20) %), +Ezqg +249, )+t

By Lemma 2.2 we obtain

q
O(Zw(j)—k—l) =qg-2n+k—-1>0,

j=1
and 6 > 0,s0 39, @(j) - (k+1) > 0. Using the assumption of the
lemma hence gives RicI' >T". q.e.d.

By the Schwarz lemma, we have

2
(3.6) h(Z) < (iz_ZRi_z) .

- |z|

Main Lemma. Let f=[Z,: - :Z,]: Ap — CP* bea nondegenerate
holomorphic map, a,, - , a, be hyperplanes in CP* in n-subgeneral
position, and w(j) be their Nochka weight. Let P(a;) = a;, where P isa
projection, and Z =(Zy, - ,Z,). If ¢>2n—k+1 and

2q(k* + 2k)
e()-(k+1)’
then there exists some positive constant C such that
k—1 4/Nya 1+2¢/N

A L o, A
(3.7) iz om0 Tl | i wi, i
j=1 (Z, aj)‘

SR k(k+1)/2+ 37 (k—p)*2a/N
<Cl—5—

R2 _ ‘ZIZ

N>

b

where H is given by Zq yo(j)~—(k+1) - (k* + 2k — 1)2g/N.

Proof We shall calculate Hk_(} h;/ % By (2.2), we have

hl/}.p _ (lAp_1| |Ap+1|
14 lAp|4

?

) (k=p)+(k—p)*2q/N
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SO

k—1

1/4 —2(k+1)—(k*+2k—1)4g/N 8¢/N 8¢/N 2+4g/N
th/p=IA0| (k+1)—(k"+ Yaq/ |A1|‘I/ '“lAk_llq/ |Ak| q/ .
p=0

Since [Ag| = |Z| and ¢y(a,) = [(Z, a)P/IZ, ¢,(a;) = A, Loy P /1A, 1,
from (3.3) and (3.6) it follows that

H (1A 1AL D 44/NlA |1+2q/1v
L (Z, @) (IS (N ~ log,(a)))

1/8,
cof-22 "
R” —|z|

Set X := sup_0<x<1x2/N(N—logx). Since ¢,(a;) <1 for all p and j,
we have -

(3.8) 1Z

1 ¢ @ )Z/N 114, I—aj,4/N
(N —logo,(a; DR K A

Substituting these into (3.8), we obtain the desired conclusion.

4. Proof of the theorem

We will now prove the theorem. The proof basically follows Fujimoto’s
proof [7].

We may assume M is simply connected, otherwise we consider its uni-
versal covering. By Koebe’s uniformization theorem, M 1is biholomor-
phic to C or to the unit disc A. For the case M = C, Nochka [8]
(see also Chen [2]) proved the Cartan conjecture which implies that a .-
nondegenerate holomorphic map from C to CP" cannot omit 2n —k+2
hyperplanes in general position; in this case our theorem is true. For our
purpose it suffices to consider the case M =A.

Now assume our theorem is not true, namely the Gauss map G omits g
hyperplanes H,,---, H, in CP""' in general position and ¢ >
(k+1)(n—~k/2—1)+n. Let w(j) be the Nochka weight of {H;} .

Because G is k-nondegenerate, we assume G(A) C cp* , so that G =
[&: " :8&l:A— CP* is nondegenerate. Let /: CcP* - cP""! be the
inclusion map, /*: CP"~" — CP*" be the dual map, and a, = I"(H,).
Then the {a;} are the hyperplanes in CP* in (n — 1)-subgeneral position,
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Let G = (&> » &) C — crkt _ {0}; then the metric ds* on M
induced from the standard metric on R” is given by
(4.1) ds’ =2|GP|dz)*.

By Lemma 2.2, we have

g-2n-1)+k-1=9 (i )

and

2n—-1)—-k+1 2n-k-1
o< k+1 - k+1 7
SO

Z(Ej’-=1w(1)—k—1) _Ag-2n+k+1) 2q-2n+k+1)
k(k+1) T Bk(k+1) = (2n-k-1k

Consider the numbers

k
(42) p= [g(k+1>+%"2(k—p)2},

p=0

>1.

(43) y=%[§(k+ D+ k1) %i (p+1 ]

(4.4) p =

Choose some N such that
Y o()—(k+1)—k(k+1)/2
K+ 2k -1+ Yk (k-p)
g_g> Y 00) - (k+1)—k(k+1)/2
N " 2/g+ (kK> +2k - 1)+ k(k +1)/2+ XEipp+1)

so that
4p*
N

(4.5) O0<p<l, > 1.

Consider the open subset

.M’=M—({é=} U {épLaj=0})

=/ =4V >
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of M and define the function

~ ) ,
(4.6) V= 3:1 G, aj)|w(j)
Hs;ol ;I'=1 |Gp [ aj|4/N|le1+2q/N

on M', where ép =GOA...AG? and Pla;)=aq;.

Let n: M — M’ be the universal covering of M’ . Since logv o7 is
harmonic on M’ by the assumption, we can take a holomorphic function
S on M’ such that |B| = vor . Without loss of generality, we may assume
that M’ contains the origin o of C. As in Fujimoto’s papers [5], [6],
[7], for each point j of M we take a continuous curve ¥5:00, 11— M
with 7,(0) = o and y,(1) = =(p), which corresponds to the homotopy
class of . Let ¢ denote the point corresponding to the constant curve
o, and set '

»

w=F(ﬁ)=/y B(z)dz,

where z denotes the holomorphic coordinate on M’ induced from the
holomorphic global coordinate on M’ by z. Then F is a single-valued
holomorphic function on M satisfying the condition F (6) = 0 and
dF(p) # 0 for every p € M'. Choose the largest R (< +o00) such
that F maps an open neighborhood U of ¢ biholomorphically onto an
open disc Ay in C, and consider the map B = 7o (F | U)_I: Ap — M.
By the Liouville theorem, R = co is impossible.
For each point a € A consider the curve

L,:w=ta, 0<t<l1,

and the image I') of L, by B. We shall show that there exists a point
a, in 8A, such that T'q; tends to the boundary of M. To this end,
we assume the contrary. Then, for each a € dAy, there is a sequence
{t,;o=1,2,---} such that lim, _ ¢ =1 and z,=1im _,_ B({a) ex-
istin M . Suppose that z, ¢ M . Let 8, =4p"/N > 1. Then obviously,

o (142¢/N)p" =~ 8

lgg%lﬂGk[ 11 G, L a;|®-v>0.
If G,(z,) =0 or |5p L ;|(zy) = 0 for some p and j, we can find a

positive constant C such that v > C/|z — zol‘SO in a neighborhood of z,,
and obtain

R=/ |dw|=/
Lﬂ Lﬂ

This is a contradiction. Therefore, we have z;, € M ",

‘2—"” |dz|=/v(z)|dz|2C L \dz] = 0.
z T

|z = z4]9,
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Take a simply connected neighborhood V' of z,, which is relatively
compact in M', and set C' =min,_, v(z) > 0. Then B(ta) e V (f, <
t < 1) for some ¢;. In fact, if not, I', goes and returns infinitely often
from 0V to a sufficiently small neighborhood of z, and so we get the
absurd conclusion

R=/ |dw|2C'/ dz| =
La ra

By the same argument, we can easily see that lim,_,, B(fa) = z,,. Since =

maps each connected component of n“l(V) biholomorphically onto V',
there exists the limit

By =lim(F | U) ' (ta)e M.

Then (F | U )_1 has a biholomorphic extension to a neighborhood of
a. Since a is arbitrarily chosen, F maps an open neighborhood of U
biholomorphically onto an open neighborhood of ZR . This contradicts
the property of R. In conclusion, there exists a point @, € A, such that
I"_ tends to the boundary of M .

a

0By the definition of w = F(z) we have
!dw } 1 —y dw

q G @(j) Ve y
_ j=1 |( ) aj)l i’lg
H/;;Ol 3=1 lép l_ aj|4/N|ék|1+Zq/N dz

Let Z(w) = G o B(w), Zy(w) = g 0 B(w), -+ , Z(w) = g o B(w).
Since ZAZ' A AZP = (GA--- AGPTV) (LD it is easy to see

that
. 1/H
_ AP i
- k—1 4/N 1+2q/N ’
e TI9, 1A, Loy [¥|A, )2
where Ap = Z(O) A ANZP)

On the other hand, the metric in A, induced from ds* = 2|G* |dz|?
through B is given by

dw
dz

(4.8)

2
(4.9) B ds* = 21GBw)* | 22| |dw]*.
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Combining (4.7) and (4.8) yields

1/H
k—1 4/N 1+2q/N
1o T2, 1A, Lo M)A, 12/

L NZ, )Y

B ds =2|Z| |[dw|.

Using the main lemma, we obtain

P
B'ds<C % [dw|,
R” —[w]

where C is a positive constant. Since p < 1, it then follows that

RO o Y
d(O)s/ ds=/ B*dsgc/ 2R ) Jdw| < oo,
T, L, 0 \R°—|w|

where d(0) denotes the distance from the origin o to the boundary of
M , contradicting the assumption of completeness of M . Hence the proof
of the theorem is complete.
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